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In [1] Richard Crandall and I establish p-normality (i.e., normality base p) for the
class of constants

αp,q =
∞∑

k=1

1

qkpqk

where p and q are co-prime. The proof given in [1] is somewhat difficult and relies on
several not-well-known results, including one by Korobov on the properties of certain
pseudo-random sequences. In this note I show that normality can be established much
more easily, as a consequence of what may be termed the “weak hot spot” theorem (in
the following, {·} denotes fractional part):

“Weak Hot Spot” Theorem. The real constant α is b-normal base if and only if
there exists a constant C such that for every subinterval [c, d) ⊂ [0, 1),

lim sup
n≥1

#0≤j<n({bjα} ∈ [c, d))

n
≤ C(d− c).

In other words, normal numbers have no “hot spot” intervals, and conversely a non-
normal number must have hot spot intervals — there must be digit strings that appear,
say, one billion times more often than the frequency they would appear if the number
were normal. The weak hot spot theorem is proved in [3, pg. 77].

Here is how the weak hot spot theorem can be used to establish normality for the α
constants studied in [1]. In this note I will use α = α2,3, namely

α =
∞∑

k=1

1

3k23k ,

but the proof is very similar for other αp,q constants from [1].

Theorem. α is normal base 2.

Proof: As above, the notation {·} will denote fractional part. First note that the suc-
cessive shifted binary fractions of α can be written as

{2nα} =


blog3 nc∑

m=1

2n−3m
mod 3m

3m

 +
∞∑

m=blog3 nc+1

2n−3m

3m
.

As in [1], note that the first term of this expression can be generated by the recursion
x0 = 0, and, for n ≥ 1, xn = {2xn−1 + rn}, where rn = 1/n if n = 3k for some k, and zero
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otherwise. Observe that the x sequence has the pattern
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and so forth. It is proven in [1] that indeed this sequence has the pattern evident here: it
is a concatenation of triply repeated segments, where each individual segment consists of
fractions with numerators, at stage p, that range over all integers relatively prime to the
denominator 3p. We omit this proof here. From this pattern it follows that if n < 3p+1

then zn is a multiple of 1/3p. Also, it follows by inspection of (1), that

|xn − {2nα}| =

∣∣∣∣∣∣
∞∑

k=n+1

2n−krk

∣∣∣∣∣∣ <
1

2n
. (1)

Suppose we are given some half-open interval [c, d). Observe, in view of (1), that if
{2jα} ∈ [c, d), then xj ∈ [c − 1/(2j), d + 1/(2j)). Let n be any integer greater than
1/(d − c)2, and let 3p denote the largest power of 3 less than or equal to n, so that
3p ≤ n < 3p+1. Let m = b1/(d − c)c + 1. Now note that for j ≥ m, we have [c −
1/(2j), d + 1/(2j)) ⊂ [c− (d− c)/2, d + (d− c)/2). Since the length of this latter interval
is 2(d − c), the number of multiples of 1/3p that it contains is either b2 · 3p(d − c)c or
b2 · 3p(d − c)c + 1. Thus there can be at most three times this many j’s less than n for
which xj ∈ [c− (d− c)/2, d + (d− c)/2). Therefore we can write

#0≤j<n({2jα} ∈ [c, d))

n(d− c)
≤ m + #m≤j<n(xj ∈ [c− (d− c)/2, d + (d + c)/2))

n(d− c)

≤ m + 3(2 · 3p(d− c) + 1)

n(d− c)
< 8.

We have shown that for all [d− c),

lim sup
n≥1

#0≤j<n({2jα} ∈ [c, d))

n
≤ 8(d− c).

so by the weak hot spot theorem, α is 2-normal.
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